

AGF series aerosol generator with built-in pump

Description

The AGF 2.0 iP aerosol generator is able to atomize liquids with a binary nozzle. Unlike the other versions in the AGF series, the AGF 2.0 iP is equipped with a built-in pump that generates volume flow, making an additional compressed air connection unnecessary in order to operate the device.

Version: September 3, 2020

Fig 1: AGF 2.0 iP Fig. 2 presents a schematic arrangement of the generator components.

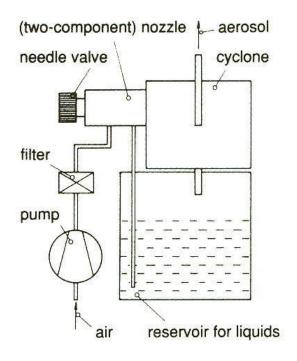


Fig. 2: Schematic diagram of the AGF 2.0 iP aerosol generator **Startup** A built-in pump suctions ambient air via a prefilter and directs it to a binary nozzle via a particulate air filter. The primary pressure on the nozzle is 0.6 bar above ambient pressure. The negative pressure in the nozzle suctions the liquid to be atomized from a reservoir, while the volume flow of this liquid is able to be adjusted using a needle valve that is incorporated into the nozzle.

	Dimensions WxHxD mm	Weight kg	V I∕min	m _{max} * g/h	dp _{mean} *** μm	d _{max} μm	115/230V 50/60 Hz	Pressure- tight up to 10 bar	Compressed air supply
AGF 2.0	300x330x240	ca. 9	6-17	4	0,25	2			x
AGF 2.0 iP	300x330x240	ca. 15	16-18	2	0,25	2	x		
AGF 10.0	Ø240x385	ca. 4	12-45	20	0,5	10			x
AGF 2.0 D	Ø200x260	ca. 8	12-45	4	0,25	2		x	x
AGF 10.0 D	Ø200x300	ca. 8	12-45	20	0,5	10		x	x
AGF 2.0 B**	Ø210x300	ca. 4	6 -25	4	0,25	2			x
UGF 2000	270x200x175	ca. 4	ca. 1 -13	1,5	0,2	1,5			x

Version: September 3, 2020

Table 1: Overview of the AGF and UGF systems

^{*}applied for DEHS **test rig version ***average number diameter

Benefits

- Exact adjustment of the operating parameters
- Number concentration (CN) can be varied by the factor 10
- Particle size distribution remains virtually constant, if CN is modified
- Number distribution maximum is within the MPPS range
- Virtually no power losses
- Optimal concentration, no coagulation losses
- Resistant to numerous acids, bases, and solvents
- Robust design, stainless steel housing
- · Easy to operate
- As opposed to the collision method, the AGF 2.0 does not generate any particles > 2 μ m thanks to its cyclone.
- Due to the fact that the AGF generates virtually no droplets > 2 μ m, the consumption of materials is very low, thus ensuring a long dosing time.

Version: September 3, 2020

• With the use of DEHS the mean particle size is within the MPPS range for HEPA/ULPA filters

Datasheet

Parameter	Description				
Volume flow	16 – 18 l/min				
Power supply					
	115 – 230 V, 50 – 60 Hz				
Dimensions					
	300 • 330 • 240 mm				
Weight	approx. 15 kg				
Particle material	DEHS, DOP, Emery 3004, paraffin oil, other non-resinous oils				
Dosing time	> 24 h				
Mass flow (particles)	< 2 g/h (DEHS)				
Compressed air connection	No No				
Aerosol outlet connection	Ø _{inside} = 6 mm, Ø _{outside} = 8 mm				
Mean particle diameter (number)	0.25 μm				
Biggest particle diameter	2 μm				
Filling quantity	300 ml				

Version: September 3, 2020

Applications

• Clean room technology

- Acceptance tests and leak tests as per ISO 14644 and VDI 2083
- Leak tests, fit testing
- Recovery tests

· Filter testing, quality control

- Filter cartridges
- Car interior filters
- Filter media, particulate air filters
- Aerosol generation for MPPS determination of HEPA/ULPA filters

• Tracer particles

- Inhalation experiments
- Optical flow measurement procedures with positive pressure values of up to 10 bar (model version AGF 2.0 D)
- LDV

• Calibration of counting particle measurement methods

- Nebulization of latex suspensions < 1 μm
- Smoke detector test

Palas GmbH

Partikel- und Lasermesstechnik Greschbachstrasse 3 b **76229 Karlsruhe**

Germany

Contact: E-Mail: mail@palas.de

Managing Partner:
Dr.-Ing. Maximilian Weiß
Commercial Register:
register court: Mannheim

company registration number: HRB 103813

USt-Id: DE143585902

Version: September 3, 2020

Internet: www.palas.de

Tel: +49 (0)721 96213-0

Fax: +49 (0)721 96213-33

PALASCOUNTS