Print View

PLG 2100

Aerosol generator for the defined atomization of oils, e.g. for
 blow-by applications

Model Variations

PLG 2100 S
Heated version of the PLG 2100 with automatic refill unit

Description

The PLG 2100 uses a nozzle system developed by Palas ${ }^{\circledR}$. Depending on the application, a special nozzle that is able to be heated to $120^{\circ} \mathrm{C}$ is used in order to enable quick and reproducible adjustment to the desired particle size distribution and concentration. Among other uses, the PLG 2100 is used on the HMT 1000 filter test rig to test oil nebulizers in order to disperse a corresponding motor oil, e.g. 10w-40. The heating of the oil changes the number concentration, as well as particle size distribution, of the material to be dispersed due to a change in the viscosity. This additionally enables materials to be dispersed which are unable to be nebulized at cooler temperatures due to their viscosity. The PLG 2100 is equipped with two replaceable nozzles: Nozzle 1 for low mass flows of up to $20 \mathrm{~g} / \mathrm{h}$ max. (depending on the aerosol substance in use), nozzle 2 for high mass flows of up to $100 \mathrm{~g} / \mathrm{h}$ max. (depending on the aerosol substance in use). Startup The liquid to be dispersed is filled in the reservoir. The nozzle system developed by Palas is immersed in the liquid. This nozzle system is based on the Laskin principle and guarantees extremely precise dosing constancy with uniform particle size. The mass flow is adjusted using the volume flow through the nozzle. The volume flow is controlled by a pressure regulator and a manometer on the device.

Fig. 1: Schematic diagram of the PLG 2100 aerosol generator

Fig. 2: Highly constant particle concentration over time at a resolution of 30 s

Print View

PLG 2100

Benefits

- Excellent short-term and long-term dosing constancy
- Heatable
- Best reproducibility with respect to particle size distribution and particle concentration
- Large mass volume range (very low and very high)
- Long dosing time over several days with automatic refilling (optional)
- Robust design (optionally resistant against chemically aggressive liquids)
- Compact and light
- Easy to operate, proven in industrial applications

Print View

PLG 2100

Datasheet

Parameter	Description
Volume flow	
	$3-110 \mathrm{I} / \mathrm{min}$
Power supply	$115-230 \mathrm{~V}, 50-60 \mathrm{~Hz}$
Dimensions	
	$440 \bullet 380 \bullet 380 \mathrm{~mm}$
Weight	approx. 16 kg
Mass flow (particles)	$<100 \mathrm{~g} / \mathrm{h}$ (white oil)
Aerosol outlet connection	$\emptyset_{\text {inside }}=32 \mathrm{~mm}, \emptyset_{\text {outside }}=42 \mathrm{~mm}$
Special features	Heatable up to $120^{\circ} \mathrm{C}$
Mean particle diameter (number)	$1.5 \mu \mathrm{~m}$
Filling quantity	1 I

Print View

PLG 2100

Applications

- Filter industry/oil separators
- Determination of separation efficiency
- Determination of fractional separation efficiency
- Loading test
- Test of cooling lubricant separators
- Used on the HMT 1000 filter test rig to test oil nebulizers
- Comparison of particle measurement devices
- Tracer particles
- Flow visualization

Palas GmbH

Partikel- und Lasermesstechnik
Greschbachstrasse 3 b
76229 Karlsruhe
Germany

Contact:
E-Mail: mail@palas.de

Managing Partner:
Dr.-Ing. Maximilian Weiß Commercial Register:
register court: Mannheim
company registration number: HRB 103813
USt-Id: DE143585902

