

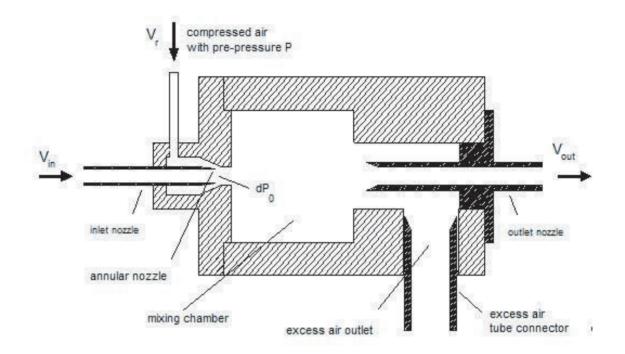
稀释系数为1:10的稀释系统

系列其它型号:

VKL 10 E

不锈钢稀释系统,用于化学侵蚀性气溶胶 稀释系数为1:10

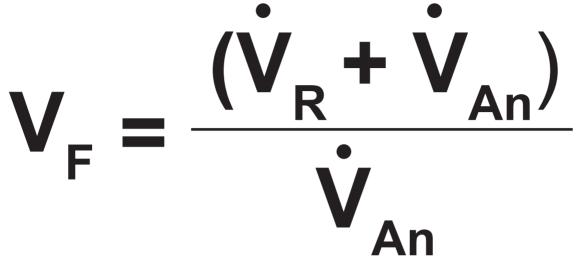
VKL 10 ED


由不锈钢制成的耐压稀释系统,用于稀释最高至10 bar的反压,以及具有化学侵蚀性的气溶胶 稀释系数为1:10

说明

VKL10 系列稀释系统可以以确定和可靠的方式通过稀释系数01:10降低气雾剂的浓度,可用于降低非常高浓度的气雾剂的浓度。

Palas®VKL 10稀释系统用于垂直操作,其粉末和烟尘的粒径范围最大为 $20~\mu m$ 。通过多个VKL级联系统可实现高达1:~100,000的稀释系数。

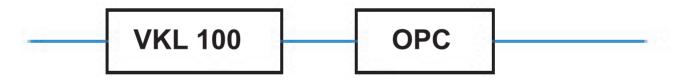


功能原理

无颗粒空气(体积流量VR)通过吸嘴连通的环形通道进行循环。因此,根据伯努利方程,在吸嘴处产生体积流量VAn。

稀释系数V。根据以下公式计算

Palas®级联稀释系统的粒径分布的代表性稀释度


VDI173号报告(2007年)从计量学上证明,使用Palas[®]稀释系统,可以实现可重现的气溶胶稀释(低至 V_{F} 100,000)。

简单的现场功能测试

通过此简单的测试设置,任何人都可以检查Palas®级联稀释系统:

首先,通过稀释步骤进行颗粒测量。在此重要的是气溶胶浓度例如待测实验室空气不超过重合效应限值(最大可检测气溶胶浓度)。在第二步中, 待测稀释步骤串联(级联)。为了检查测试步骤(位置 2)的稀释系数,将位置 1 处的测量结果中的总颗粒数除以位置 2 处的总颗粒数。

实验装置

位置1:实验室空气

位置2: 实验室空气

VKL 100结合OPC确保无重合效应的测量; 测试VKL 10。

测量示例

Particle class in µm	Number Pos.1
0.2	151648
0.3	71604
0.5	4305
0.7	360
1.0	82
2.0	16
3.0	1
5.0	0
Sum	228016

Particle class in µm	Number Pos.2		
0.2	15166		
0.3	7290		
0.5	524		
0.7	65		
1.0	21		
2.0	3		
3.0	0		
5.0	2		
Sum	23071		

稀释系数的计算

$$VF = \frac{\dot{N}GesPos1}{\dot{N}GesPos2} = 9,88$$

假设第一次测量不受重合误差的影响,并且被测试的稀释系统正在运行(未受污染),则确定稀释系数约为 10。如果不是这种情况,则测量1中可能存在重合效应。在这种情况下,必须降低气溶胶浓度或使用另外的稀释步骤。另一种可能性是待测试的稀释步骤受污染。在这种情况下,必须清洁设备并重复测试。

Туре	Dilution factor* V _F	Pressure- resistant up to 10 bar	Chemically resistant	Heatable up C	dp _{max} in µm	Compressed air 4 - 8 bar	Cascadable	Voltage
DC100	10,100				<5			115V / 230v
DC1000	10,100,1000				<5			115V / 230v
DC10000	10,100,1000,10000				<5			115V / 230v
KHG10	10		х	150	<20	Х	Х	115V / 230v
KHG10 D	10	х	х	150	<20	Х	Х	115V / 230v
PMPD 100	100		х	200	<5	Х		115V / 230v
PMPD 1000	1000		х	200	<5	Х		115V / 230v
VDD 10	1 - 10				<10	Х		115V / 230v
VKL 10	10				<20	Х	Х	
VKL 10 E	10		х		<20	Х	Х	
VKL 10 ED	10	X	х		<20	Х	Х	
VKL 10 V	10				<20	Х	Х	
VKL 27	27				<10	Х	Х	
VKL 100	100				<2	Х	Х	

表1: Palas®稀释系统的技术特性

优势

- Palas®的稀释系统非常准确。每个单独的设备都有校准证书备案。
- 稀释步骤可提供暂时恒定的代表性稀释度(稀释系数为10和100)。
- 稀释系统可以按照 100、1,000、10,000 和 100,000 的稀释因子进行级联
- 压缩空气消耗低,例如四个 VKL 10 系统仅需 128 升 / 分钟,稀释倍数为 10,000
- 稀释步骤可与所有常见的粒子计数器组合使用。
- 通过简单的测试设置,用户可以自行检查这些级联稀释系统。
- 使用 VKL 10 E、VKL 10 ED、KHG 10 和 KHG 10 D 稀释系统,等压稀释超压高达 10 bar,等温稀释高达 120°C
- 简单的现场功能测试

技术参数

参数	描述
外型尺寸	100 x 245 x 100 毫米
重量	约 4 kg
稀释系数	1:10
等速吸嘴	0.028 - 0.06 升/分钟、 0.23 - 0.5 升/分钟、 0.6 - 1.6 升/分钟、2 - 5 升/分钟、28 升/分钟≥ 15 - 37升/分钟
最大粒径	< 20 µm(烟尘)
特殊功能	级联
体积流量(清洁空气)	18 - 45 升/分钟
体积流量(吸入流量)	2 – 5升/分钟
压缩空气供应	4 – 8 bar

PALAS

VKL 10

应用领域

- 气溶胶测量技术: 柴油机废气、切屑、冷却剂气溶胶、焊缝烟雾、油滴、过滤器和惯性分离器的测试气溶胶
- 使用计数测量方法确定分离效率,例如带烟尘过滤器或 HEPA / ULPA 过滤器
- 洁净室、分离器和安全工作台的泄漏测试和验收测量
- 吸入毒理学
- 防毒面罩和滤芯的质量控制

帕剌斯仪器 (上海) 有限公司

上海市松江区顺庆路650号6C幢5层,邮编 201612 info@palas.com.cn 021-5785 0190 www.palas.de

